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Incompressible Finite Element Methods for Navier-Stokes 
Equations with Nonstandard Boundary Conditions in R3 

By V. Girault 

Abstract. This paper is devoted to the steady state, incompressible Navier-Stokes equa- 
tions with nonstandard boundary conditions of the form u n = 0, curl u x n = 0, either 
on the entire boundary or mixed with the standard boundary condition u = 0 on part 
of the boundary. The problem is expressed in terms of vector potential, vorticity and 
pressure. The vorticity and vector potential are approximated with curl-conforming 
finite elements and the pressure with standard continuous finite elements. The error 
estimates yield nearly optimal results for the purely nonstandard problem. 

1. Introduction. In this paper we propose to solve a Navier-Stokes problem 
of the following type: 

(1.1) -vL\u + E ujau/Ox + Vp = f, divu=O in Q, 

ji3 

with boundary conditions 

(1.2a) u n = O, curl u x n = O on F, 

or 

(1.2b) u n=O, curluxn=O onF0, u=O onf\Fo, 

where Q is a bounded, convex domain of R3 with a polyhedral boundary F, F0 is a 
connected portion of F, either empty or with strictly positive measure and n is the 
exterior unit normal to r. The case where ro is empty corresponds, of course, to 
the standard Navier-Stokes equations. We shall use a mixed incompressible finite 
element method that approximates the vector potential and vorticity of u, using 
the curl-conforming elements of Nedelec. 

The convexity assumption on Q is a well-known theoretical consequence of the 
fact that F is not smooth. There is no practical evidence that it is necessary, and 
this assumption is disregarded in practice: instead we can assume that Q is simply 
connected and F is connected. The case where F is not connected or Q not simply 
connected is more intricate and is not studied here. It might be done through the 
approach of Bendali, Dominguez and Gallic [4]. 

With easy modifications, our analysis extends to the case where F0 is not con- 
nected. We can also handle boundary conditions of the form 

(1.2c) u x n= O, p=O on F, 
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where p stands for the dynamical pressure: 

P = p + (1/2)u u 

(alone or combined with the previous conditions), but this case presents a (yet 
unsolved) theoretical difficulty arising from the roughness of F. 

Navier-Stokes equations with nonstandard boundary conditions are of growing 
interest. Begue, Conca, Murat and Pironneau present in [3] a thorough theoretical 
and practical study of the subject; they consider more general domains as well as 
nonhomogeneous boundary conditions. For the numerical solution, they propose a 
"velocity-pressure" Hood-Taylor scheme in [2] and a "PF-Pl" scheme with a finer 
mesh for the pressure in [3]. In [22], Verffirth studies a related Stokes problem with 
a nonhomogeneous boundary condition of type (1.2c) on a curved domain. 

Sections 2 to 5 are dedicated to the theoretical and numerical analysis of system 
(1.1) with the boundary conditions (1.2a). They are simpler to handle than the 
conditions (1.2b), studied in Section 6, and many results relative to the former 
carry over with straightforward modifications to the latter. 

It turns out that the curl-conforming finite elements of Nedelec are particularly 
well adapted to express the nonstandard boundary conditions (1.2a), (1.2b) and 
(1.2c). We shall derive nearly optimal error estimates for (1.1) with (1.2a), but not 
with (1.2b), although we believe that this can be improved. The difficulty arises 
not from the nonlinearity, but from the mixed formulation itself and occurs also in 
two dimensions. 

2. A "vector potential-vorticity" formulation for (1.1), (1.2a). Let us 
first recall the classical Sobolev space Wm'P(Q) or Hm(Q) when p = 2: 

WM P(Q) = {v E LP(Q); O'v E LP(Q) V Iil < m}, 

equipped with the following seminorm and norm: 

|VIMpQ =19JIO %(x)IPdx} 

{ 8 l~~~/p 

IIVIImp4Q = { IVIk,p,Q} 
tk<m) 

We make the usual modification when p = x0 and we agree to omit p when p = 2. 
As usual, (,.) denotes the scalar product of L 2(s). Also, recall the space 

Ho'(Q) = {v E H1(Q); v = O on 1}. 

Apart from these, we require the following Hilbert spaces relative to the divergence 
and rotation operators: 

H(div; Q) = {v E L2(Q)3;divv E L2(Q)} 

Ho(div; ) = {v e H(div; Q); v n1r = 01,* 
H(curl; Q) = {v e L2()3; curl v E L2(Q)3}, 

Ho (curl; Q) - {v E H(curl; Q); v x n1r = ?}, 
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equipped with the norms 

IIVIIH(div;Q) = |IJvIIFQ + || div v1201}1/2, 

|IIVl H (curs2) = {f IVI||g + Ilcurl v | 2| ,} 1/2. 

We refer to Duvaut and Lions [10] and Girault and Raviart [12] for an extensive 
study of these spaces. In order to handle the Navier-Stokes equations, we also 
introduce the Banach spaces 

HP(curl; Q) = {v E L2 (Q)3; curl v E LP (0)31, 

Ho(curl; 1) = {v E HP(curl; 1);v x nfr = ?}, 

which we shall use with the exponents p = 4 and p = 4/3. It can be shown, in 
particular, that for this range of p the trace operator v x nlr can be defined in a 
weak sense. 

In R3, it is not altogether trivial to formulate the Navier-Stokes (or even the 
Stokes) equations in terms of vector potential and vorticity, because the vector 
potential of u is not easily characterized. Our formulation derives from the three 
fundamental theorems below, due to Bernardi [5], Girault and Raviart [12] and 
Nedelec [16]. The assumptions on the domain are: Q is bounded, simply connected, 
with a polyhedral, connected boundary F. 

THEOREM 2.1. Each function u E L2 (0)3 that satisfies div u = 0 in Q has a 
unique vector potential tb E L2(0)3 characterized by 

curl t/ = u, div ' = 0 in Q, V/'n=O onlF. 

If, in addition, Q is convex, then tb E H (0)3. 

THEOREM 2.2. Each function u E L2 (0)3 that satisfies div u = 0 in Q, u n= 
0 on F, has a unique vector potential tb E L2(0)3 characterized by 

curl t/ = u, div = 0 in Q. V7 x n = O on F. 

If, in addition, Q is convex, then 1 E H1(0)3. Moreover, there exists a real s > 2 
depending on the angles of F such that 

(2.1) tb E W1,t(Q)3 whenever u E Lt(0)3 Vt E [2, s]. 

Remark 2.1. The extra regularity (2.1) stems from a powerful result of Grisvard 
[14] concerning the solution of -Au = f, ujr = 0 on a convex polyhedron. The 
same regularity for the vector potential of Theorem 2.1 would require an analogous 
result for a nonhomogeneous Neumann problem. Although such a result is now 
well known in polygons of R2, to the author's knowledge it is not yet proved in R3. 
But there is a strong conjecture by Dauge [9] that it does hold. D 

THEOREM 2.3. Let Q be convex. All functions i/ E L 2(0)3 that satisfy 

divt' = 0, curl iv E L2(0)3, V/'n=O (ort/'xn=O) onFr, 

belong to H1(0)3 and 
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In addition, when Vk x n = 0 on F and curl Vk E Ls(Q)3 with the real s > 2 of 
Theorem 2.2, then for each t E [2, s] we have ?b E Wlt(0)3 and 

(2.3) IIV)Ili,t,Q < C(t) Icurl VkIlo,tQ. 

Now assume that the right-hand side f of (1.1) belongs to L4/3(Q)3. As for the 
classical Navier-Stokes equations (cf., for instance, Temam [21]), it is easy to prove 
that the system (1.1), (1.2a) has at least one solution: 

(ul p) E H1 (Q)3 x L2 (Q). 
Let (u, p) be one of these solutions, and suppose that curl u E H4/3 (curl; Q) and 
p E W1,4/3((Q). Setting 

w = curl u, u = curl Vb with Vb characterized by Theorem 2.2, 

and using the identities 

-\u = curl curl u, uaula/0xj = curl u x u + (1/2)V(u u), 
j<3 

we derive from (1.1) that 

v(curl w, curl p) + (w x curl ti, curl p) = (f, curl p) Vp E H04(curl; 0). 

The relationship between w and V can be expressed by 

(curl Vb, curl p) = (w, p) Vp E HO43 (curl; Q). 

As far as the pressure is concerned, setting 

P = p + (1/2)u u, 

we also derive from (1.1), (1.2a) that 

(VP, Vq) = (f - w x curl 4, Vq) Vq E W1 (Q). 

Thus, we propose for (1.1), (1.2a) the following formulation: 
Find a pair (a1,w) E H04(curl; Q) x HO43 (curl; Q) and P E W1 4/3(Q)/R such 

that 

(2.4) v(curl w,curl p) + (w x curl Ik,curl p) = (f,curl p) Vp E H4(curl;Q), 

(2.5) (curl tk, curl p) = (w,bp) Vp E HO43(curl;IQ), 

(2.6) divtk = O in Q, 

(2.7) (VP, Vq) = (f - w x curl 4', Vq) Vq E W1 4 (Q). 

THEOREM 2.4. Let Q be convex and assume that the right-hand side f and the 
solutions (u, p) of the system (1.1), (1.2a) have the regularity 

(2.8) f E L4/3((Q)3, w = curl u E H4/3 (curl; Q), p E W1,4/3(Q). 

Then the mixed formulation (2.4)-(2.7) is equivalent to (1.1), (1.2a). 

Proof. We have just seen that, under the assumption (2.8), each solution of (1.1), 
(1.2a) is also a solution of (2.4)-(2.7). The converse follows from the fact that all 
functions v E H1 (Q)3 with v n = 0 have the decomposition 

v = Vq + curl p with q E W1'4 (Q) and p E Ho4 (curl; Q). D 
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The constraint (2.5) is conveniently expressed by means of the space 

V = {v = (p, 0) e HO (curl; Q) x L2(0)3; div p = 0, 

(curl p, curl p) = (0, p) Vs E H043 (curl; Q)}, 
normed by 

liv i = IkIIo,o + Ilcuri VlOX,4,0 + 1110 lo,0 

It is a matter of routine to prove that the pairs v = (p, 0) of V satisfy 

-AVf = 0. 

In addition, when Q is convex, then p E W1,s(Q)3 with the exponent s of Theorem 
2.2, curl p E H1(0)3 and 

(2.10) ilcuri P1iio < CiiOiioo. 

As a consequence, the seminorm 

(2.11) Ivi = 1(p,O)i = ii0iio,0 

is a norm on V equivalent to the above norm. 
Remark 2.2. Note that formula (2.5) implies that div w = 0. D 

Remark 2.3. When f E L2(0)3, the Stokes problem 

(2.12) -vL\u + Vp = f, divu=O insQ 

(2.13a) u n=0, curl u x n = O on f, 

has the equivalent formulation (because w = curl u E H(curl; Q)): 
Find a pair (/, w) E Ho (curl; Q) x Ho (curl; Q) and p E H1 (Q)/R such that 

(2.14) v(curl w, curl p) = (f, curl p) Vp E Ho(curl; Q), 

(2.15) (curl b, curl p) = (w, q) VP E Ho(curl; Q), 

(2.16) divt/p=0 in Q, 

(2.17) (Vp, Vq) = (f, Vq) Vq E H1 (Q). 

It is easy to prove that this problem has a unique solution that satisfies the following 
bounds: 

iicurl wiioo < (1/v) hf lioo, iiw1iiiQ < (C/v) 1fii0 ib 
llsblll,0 < CIP110,oQ) A1curl V5111,0 < C11W110,Q; 

if f E L9(0)3 (with the exponent s of Theorem 2.2), then 

II141,9Q < ()/)llOQ 

if f E H(curl; Q), then 

iicurl wliio < Clicurl fiio,o. 5 

Remark 2.4. It follows readily from (2.17) that the pressure p satisfies (in a weak 
sense) the boundary condition 

(2.18) Op/On = f n on F. 

Owing to the nonlinear term in the Navier-Stokes equation, the normal derivative 
of the dynamical pressure P is not directly related to f but depends also upon the 
velocity. E 
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3. Families of curl-Conforming and div-Conforming Finite Elements. 
There are two families of curl-conforming finite elements that can be used to ap- 
proximate Problem (2.4)-(2.7). Both were developed by Nedelec, the first one in 
[15] and [16] and the second one in [17]. For the sake of simplicity, we shall work 
here with the second family. It is more costly as far as the number of degrees of 
freedom is concerned, since the velocity involves complete polynomials of degree k 
versus incomplete polynomials for the first family, but it is easier to describe and 
more accurate in some situations. 

As usual, we denote by Pk the space of polynomials of three variables of degree 
at most k, and by Pk the subspace of homogeneous polynomials of degree exactly 
k. Let us fix an integer k > 1 and define the following subspace of P3: 

(3.1) Dk = (Pk-1)3 {p(x)x;Vp E Pk-}. 

Definition 3.1. Let ic be a tetrahedron with faces denoted by f and edges denoted 
by e, - being the direction vector of e, and let u E Wlt(c)3 for some t > 2. We 
define the three sets of moments of u on tc: 

(3.2) Me(u) = {j(u. r)qde;Vq E Pk(e), for the six edges e of I, 

Mf(u) = {fu qds;VqEDk-l(f) tangent to the face f, 
(3.3) 

for the four faces f of cJ 

(3.4) M<(u) = {ju.qdx;VqEDk-2(l)} * 5 

Nedelec proves in [17] that this set of moments is unisolvent and curl-conforming 
on (Pk)3. Hence it determines the following interpolation operator: 

(3.5) r. (u) is the unique polynomial of (Pk)3 that has the same moments 
on ic as u. 

Parallel to these elements, we introduce the following family of div-conforming 
finite elements, developed by Nedelec in [15], that generalize to R3 the elements of 
Raviart and Thomas [19]. 

Definition 3.2. Let r, be a tetrahedron with faces denoted by f and let u E 
H1 (c)3. We define the two sets of moments of u on ic: 

(3.6) Nf(u) = {f(u n)qds;Vq E Pk-l(f), for the four faces f of F, 

(3.7) N, (u)= {fu qdx; VqE (Pk-2(Ic))3} D 

Again, Nedelec proves in [15] that this set of moments is unisolvent and div- 
conforming on Dk; the associated interpolation operator-is: 

(3.8) w, (u) is the unique polynomial of Dk that has the same moments 
on r, as u. 
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Since the divergence-free vectors of Dk belong in fact to (Pk_1)3, these two inter- 
polation operators are linked by a valuable relation: 

(3.9) W. (curl u) = curl r,,(u) Vu E H )3. 

Now we turn to the finite element spaces. Since Q is a polyhedron, we can 
triangulate it entirely with tetrahedra. Thus, let S'h be a triangulation of Q made 
of tetrahedra ic with diameters bounded by h. For each integer k > 1, we define 
the following finite element spaces: 

(3.1Oa) Mh = {Ph E H(curl; r); PhIK E (Pk)h V E S}, 

(3.lOb) Fh = Mh n H0 (curl; r), 
(3.1a) = {qh E Co (); qhIK E Pk Vl E S}, 

(3.1lb) eh = Qh+ h Ho(Q) 

Next we define the interpolation operator rh from Wt t(0)3 for some t > 2 onto 
Mh: 

(3.12) rhu = r. (u) on r, V, E S-. 

Nedelec establishes in [17] that rh has the following crucial properties: 

u x n =O=- O rhu x n = O, curl u = O = curl rhu = O, 

u = Vp with Pir = 0 => rhu = VPh with Ph E eh. 

Remark 3.1. In general, the moments (3.2) are not defined when u has no more 
than H1-regularity. This is why a W"t (or an H'+")-regularity is required to define 
rh. This is one of the drawbacks of these finite elements. Unfortunately, there seems 
to be no way of bypassing the moments (3.2), because they are necessary to preserve 
vanishing curls and vanishing tangential components. o 

As far as the div-conforming finite element spaces are concerned, we set 

(3.13a) Dh = {Vh E H(div; Q); VhjK E Dk Vc E Th 

(3.13b) Doh = Dh n Ho(div; Q), 

together with the interpolation operator Wh from H1 (0)3 onto Dh: 

(3.14) whu = Wx(u) on K V, E S'h. 

As for rh, Wh has the following important properties: 

u n = 0 > whu n = 0, div u = 0 = div whu = 0, 

{uh E Doh;divuh = 0} = {curl fh;fh E Fh}. 

The following theorem, proved by Nedelec in [16] and [17] (cf. also Girault and 
Raviart [12]), collects the main approximation properties of these two interpolation 
operators. First, let us recall the notion of a regular (resp. uniformly regular) 
triangulation: 

there exists a constant af > 0 (and a constant r > 0, resp.) inde- 
pendent of h and r, such that h,/p, < ?f (resp. rh < hK < op,) 
Vt eTh, 

where hr, denotes the diameter of r, and p, the maximum diameter of the balls 
inscribed in ,c. 
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THEOREM 3. 1. Assume that the triangulation 97h is regular. Then the inter- 
polation operators rh and Wh satisfy the following stability estimates: 

(3.15) Ilu - rhuIIo,Q + hllcurl(u - rhu) 1oQ < C(t)hjujj,t,o, 

Vu E Wlt(Q)3 for some t > 2, 

(3.16) Ilu - whUII0,Q + hlldiv(u - whU)IIOQ < Chluji,o Vu E H (0)3. 

Moreover, when u E Hk(Q)3 with the integer k of (3.1), then 

(3.17) IIU - WhU|O,10 < Ch kUlk,Q, 

and when u E Hk+l (Q)3, we have 

(3.18) I|u - rhuI10,0 + hllcurl(u - rhu)I|oQ < Chk+1 ujk+1,Q, 

(3.19) || div(u - WhU)I1oQ < Ch k|Uk+l,Q. 

All the above constants are independent of h. 

It remains to impose a divergence-free condition on the functions of Mh. Since 
Mh ? H(div; Q), the best we can do is to approximate this condition by Green's 
formula. Thus, like Nedelec, we define the space 

(3.20) FOh = {Uh E Fh; (Uh, Vqh) = 0 Vqh E eh}. 

In turn, this yields an approximation of the space V defined by (2.9): 

(3.21) Vh = {Vh = (ph. Oh) E FOh x Fh; 

(curl ph, curl /h) = (Oh, ih) VSh E Fh}. 

Remark 3.2. Note that formula (3.21) implies that Oh E Foh D 
With these spaces, we discretize the Navier-Stokes system (2.4)-(2.7) by: 
Find a pair (kh,Wh) E Foh X Fh and kh E Qk'/R such that 

(3.22) v(curlwhcurl Ph) + (wh x curl Ih, curl Ph) = (fcurl Ph) Vph E Fh, 

(3.23) (curl ph, curl Ph) = (wh, /h) VSh E Fh, 

(3.24) (Vkh,Vqh) = (f-wh X curl Oh, Vqh) Vqh E h 

where k' = max(k - 1, 1). 

Remark 3.3. The reason for choosing polynomials of lesser degree for the pressure 
arises from the fact that the error on the pressure is measured in the L2 norm. The 

error analysis of Section 5 will show that (theoretically) one does not gain accuracy 
by using pressure elements of higher degree. [I 

Remark 3.4. A similar discretization of the Stokes system (2.14)-(2.17) can be 
obtained by deleting the nonlinear convection term from (3.22)-(3.24). But in this 
linear case, the pressure is entirely dissociated from the other variables and here it 
is worthwhile to compute the pressure in Qk. 5 

Remark 3.5. The other family of curl-conforming finite elements defined by 
Nedelec in [15] is cheaper, considering that it involves half as many degrees of 
freedom as is required by Definition 3.1. It is less accurate as far as the interpolation 
error on u is concerned, but it yields the same interpolation error for curl u. 5 
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4. Discrete Sobolev's Inequality and Compactness in Vh. In order to 
analyze the nonlinear problem (3.22)-(3.24), we require a discrete (uniform with 

respect to h) Sobolev's inequality for the above finite element spaces. This result is 

established in a previous paper for a slightly different space Vh (cf. Girault [11]), 

but the proof extends easily here. We give the proof for the reader's convenience. 

First, we recall an important property of the space Foh proved by Nedelec in [16]. 

THEOREM 4. 1. Assume that Q is a convex polyhedron and S'j' a uniformly 
regular triangulation of U. There exists a constant C, independent of h, such that 

(4.1) IkPhII0,Q < C||curl (PhII0,Q Vph E FOh- 

Besides that, we shall use the following theoretical result. 

LEMMA 4.1. Let Q be a convex polyhedron. For each function g in L2( 2)3, the 

problem: 

Find w E H1(0)3 and p E H1(0) such that 

(4.2) curl curl w + Vp = g, divw = O in Q, 

(4.3) w x n = O, p = O on F, 

has the equivalent variational formulation: 

Find w E HO (curl; Q) and p E Ho (Q) such that 

(4.4) 
(curl w, curl v) + (Vp, v) = (g,v) Vv E Ho(curl; Q), 

divw = O in U. 

This problem has a unique solution that satisfies the following bounds: 

(4.5) lcurl curl wIIo,o < 1IgI1O,0, IPIi,0 < I|gI|0,0, 

(4.6) lcurl wIji,o < CIjgIjo,o. 

The theorem below states a discrete Sobolev's inequality. 

THEOREM 4.2. With the hypotheses of Theorem 4.1, there exists a constant C, 

independent of h, such that 

(4.7) Ilcurl (PhII0,4,0 < CII0hII0,0 VVh = (ph, Oh) E Vh- 

Proof. Let us apply Lemma 4.1 with Oh for the right-hand side: there exists a 

unique pair (p(h),p(h)) in H1(Q)3 x H1(Q), solution of 

(curl p(h), curl p) + (Vp(h), p) = (Oh, p) V8 E Ho(curl; Q), 

(4.8) div (h) = O in Q, 

V(h) x n = O, p(h) = O on F. 

Moreover, we have the bounds 

||curl (p(h) 11 ,o < C1 110h 10,0, jp(h)jj,o < ||@hjjO,Q- 

Now let Vh = (Ph, h) E Vh; we derive from (4.8) that 

(curl(V (h) -h), curl Ph) + (V (p(h) - qh), Ph) = 0 V14h E FOhVqh E eh . 



64 V. GIRAULT 

Hence, 

(49) (curl(Ah -Ph), curl /h) = (curl(Ah - p(h)), curl Ih) 

+ (V(qh-p(h)), APh) h Ah E Foh, Vqh E eh. 

On the one hand, considering that curl p(h) is divergence-free and belongs to 
H1(Q)3, we can apply the relation (3.9) and choose Ah E FOh such that 

curl Ah = Wh curl p(h). 

With this choice, Theorem 3.1 yields 

(4.10) lcurl(Ah - (p(h))Ijon < C2hjjcurl (p(h)Iji,n < C1C2hIIahIj0,Q. 

On the other hand, nothing can be gained from V(qh - p(h)) because p(h) is not 
sufficiently smooth, but we can take advantage of the structure of Ph. Thus, we 
split Ph as follows: 

Ph = W + Vt, 

where t E Ho' (Q) is the solution of 

(Vt, VV) = (Ph, VV) Vv E Ho' (Q), 

and w satisfies 

divw = 0, curl w = curl ph, w x n = O. 

Since curl Ph E LP(Q)3 Vp, Theorem 2.3 implies that w E W1,8(Q)3 for some 
s > 2. Hence Ph can also be split into 

Ph = rhW + Vth with th E eh. 

Therefore, if we choose for qh the Hol(Q)-projection of p(h) onto Oh, we obtain 

(4.11) (V(qh - p(h)), Ph) = (V(qh - p(h)), rhW - w) 

and 

jqh -p(h)ji,n < lp(h)ji,n < ?1IhIIO,02 

As far as w is concerned, Nedelec proves in [16] that 

(4.12) 11w - rhwI1o,0 < C3(s)h 1+318-3121curl, PhIIOQ. 

Thus, if we take Ph = Ah - 0h and substitute (4.10)-(4.12) into (4.9), we find 

(4.13) Ilcurl(Ah - 'Ph)IIO1, < (CiC2h + C3(s)hl +3/8-3/12)II1hIo, 

Finally, let us write 

Ilcurl (Ph II0,4,0 < Ilcurl(Ph - Ah)I10,4,O + Ilcurl(Ah - 'p(h))II0,4,0 

+ lcurl p(h)II0,4,0. 

On the one hand, we have the inverse inequality 

(4.14) Ilcurl((Ph - Ah)II0,4,11 < C4h 3/4 Icurl(Ph - Ah)I|O,Q. 

On the other hand, we can readily prove the following variant of (3.16): 

Ijwh curl p(h) - curl p(h) IIo,4, < C0h1/4I1curl p(h)IIi,n. 
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And, of course, Sobolev's inequality holds for curl p(h): 

11curl P(h) 110,4,0 < C6 ||curl P(h)1||1,n- 
Collecting all the above inequalities, we obtain 

Ilcurl Ph I0,4,0 < h1/4 [C7 + C8(s)h3/8-3/2]OhIJ0,0 + C1C6IIOhII0,Q. 

Now it suffices to choose s so that the power of h be nonnegative. This is the case 
if 2<s<12/5. 5 

Remark 4.1. Observe that the proof of Theorem 4.2 is valid as long as Oh belongs 
to L2(Q)3; it need not belong to a finite-dimensional space. S 

The following theorem states a discrete compactness result. Its proof is identical 
to that of a similar result given in Girault [11]. 

THEOREM 4.3. We retain the assumptions of Theorem 4.1. Let (ph, Oh) be a 
family of pairs of Vh that satisfy 

weak-lim Oh = 6 in L 2(0)3. 
h--+O 

Then there exists p in Ho(curl; Q) such that ((p, 0) E V and 

lim ph = p in H4 (curl; Q). 

We end this section with an error estimate concerning the projection operator 
Ph on Foh defined by 

(4.15) Ph E Y(HO(curl; Q); Foh), (curl(PhtI-sb), curl /h) = 0 Vh E Fh. 

LEMMA 4.2. Let tb E Ho(curl;Q) with divtP = 0. Under the assumptions of 
Theorem 4.1, Phsi satisfies the bound 

IlPhIb - 0L1o, < (Ch + C(s)h1+3/83/2) Icurl(Phk - 0b)Io,n 
(4.16) + inf (II'Ph - '/Io,n + C(s)hl+3/S 3/2 1curl('h 

- ) Q) 
~PhEFh 

where C(s) is the constant of Theorem 2.3. 

Proof. For g E L2(Q)3, let w E Ho(curl; Q) and p E Ho (Q) be the solution of 
the Stokes problem of Lemma 4.1: 

(curl w,curl v) + (Vp,v) = (g,v) Vv E Ho(curl;fQ), 

divw = 0 in Q. 

Then, 

(g, Phip - ii) = (curl(w - Wh), curl(Phti - tb)) + (V(p - Ph), PhIP - f) 

VWh E FhVph E eh, 

= (curl(w - Wh), curl(Phti - tk)) + (V(p - Ph), PhIP - Ph) 

+(V(p-Ph),'ph-t) VWh,'phEFh,VPhEE h. 

Let us choose for Ph the Ho' (Q)-projection of p on Oh. Then the technique used in 
the proof of Theorem 4.2 gives here 

I (V(P- Ph), Ph'k - Ph) I < C(s)h1+3/8-3/2 Ilcurl(Phb - (ph)IIO0,02IgIIOQ1,. 

Likewise, if we take Wh E Fh such that curl Wh = Wh curl w, we obtain 

I(curl(w - Wh),curl(Phb - b))I < ChIlcurl(PhI - 0)I~o,InIgIJoXQ 
The desired result follows from these two inequalities. Ol 
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5. Error Analysis of Scheme (3.22)-(3.24). Let us make the following 
assumptions which guarantee that Problem (2.4)-(2.7) has a unique solution. First, 
we retain the hypotheses of Theorem 2.4, so that the Navier-Stokes system (1.1), 
(1.2a) is equivalent to its mixed formulation (2.4)-(2.7). Next, we introduce the 
two quantities 

(5.1) N = sup (w x curl Uncurl ()/(IuIjvIjwI), 
u,v,wEV 

(5.2) B = sup I1curl 'PIIO,4,Q/IvI, 
vEV 

where u = ()b, w), v = (p, 0), w = (ej). Then, a classical argument establishes 
that if 

(5 3) [NB||f 110,413,0/V2 < 1 

then Problem (2.4)-(2.7) has a unique solution. 
Likewise, we define analogous quantities for the space Vh: 

(5.4) Nh = SUp(wh x curl (Ph, curl Ah)/(IUhIIVhIIWhI), 

(5.5) Bh = sup I1curl (Ph II0,4,0/IVhI, 

where the sup is taken over all pairs Uh = (bh, Wh), Vh = (ph, Oh) and Wh = (oh, ?jh) 

of Vh. Owing to Theorem 4.2, the families Nh and Bh are bounded independently 
of h. Moreover, using Theorem 4.3 and a standard argument of Girault and Raviart 
[13], we can show that 

limsupNh < N and limsupBh < B. 
h-*O h-*O 

Therefore, if the condition (5.3) holds, say 

[NBIlfIlo,4/3,n]/v2 < 1 - 6 for some 6 > 0, 

then for all sufficiently small h, say h < ho, we shall have 

(5.6) [NhBhIIfII0,4/3,Q]/v < 1-6/2. 

Now, let us study the nonlinear scheme (3.22)-(3.24). A familiar finite-dimen- 
sional application of Brouwer's fixed point theorem (cf. Girault [11]) permits us to 
prove that the scheme always has a solution. Similarly, a classical argument shows 
that under the condition 

[NhBhIlf I1o,4/3,]/V2 < 1 

the solution is unique. 

THEOREM 5. 1. Let Q be a convex polyhedron and assume that the Navier- 
Stokes system (1.1), (1.2a) has the following regularity: 

(2.8) f E L4/3 (Q)3, w = curl u E ii4/3 (curl; Q) p E wl,4/3(n) 

and satisfies the condition 

(5.7) [NB If Ilo,4/3,n]/v2 < 1-6 for some 6 > 0. 
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If the triangulation Sh is uniformly regular, then the mixed approximation (3.22)- 
(3.24) has a unique solution {Uh = (bh, Wh),ph}, which bears the following relations 
with the solution {u= (ulw), j} of the mixed formulation (2.4)-(2.7): 

(5.8) I1curl(k - Obh)I1o,0 < inf I1curl(O - 'Ph)IIO,0 + CiliwU - WhII0,Q 
(PhEFh 

I1curl(ik - bh)I10,4,0 

(5.9) < inf {I |curl(?k -(Ph)II0,4,Q + C2h 3/4 |Icurl(?,b - (Ph)||0,X} 

+ C311W - WhIIO,Q- 

Moreover, when w E H(curl; Q), we have the error estimate 

11W - WhIIO,Q 

< Kl(v,w,f) inf I1curl(k - (Ph)11O,0 
{ PhEFh 

(5.10) + inlf H[11 
- Ih 

O,0 
1ZhEFh 

IhIO] 

+ C(s)hl +3/8-3/2 I1curl(w -Ph) 110, 

If, in addition, H E H1(Q), we have 

IIP -Ph IIoQ < K2 (v, w, f) {I JW -h IIoQ + I1curl(Ob - 0bh)110, } 
(5.11) + C4h hif Ii- qhll,Q- 

qhEQk' 

All constants involved are independent of h. 

Proof. We have already checked the existence and uniqueness of the solution. 
The estimates (5.8) and (5.9) are easy to prove. Let us establish the estimate (5.10). 

From the continuous and discrete formulations, we derive 

v(curl(Wh - Oh),curl 'Ph) + ((Wh - Oh) x curl bh,curl 'Ph) 

+ (w x curl(,bh- Ah),curl 'Ph) 

= v(curl(w- Oh),curl 'Ph) + ((w - Oh) x curl bh, curl Ph) 

+ (w x curl( - Ah), curl 'Ph) V'Ph, Oh, Ah E Fh. 

Let us choose Oh = PhW, the projection of w on Foh defined by (4.15), and let 
Ah E Foh be defined by 

(curl Ah,curl Ph) = (Oh, /h) 4sh e Fh, 

so that the pair (Ah, Oh) belongs to Vh. Now let us take 'Ph = Oh - Ah; in view of 
(3.23), we are left with 

VIIUh - hPhwII2 + ((Wh - Phw) x curl Oh, curl(h - Ah)) 

= ((w - Phw) x curl Oh, curl(Oh - Ah)) 

+ (w x curl(t/ - Ah), curl(/h- Ah)) 

Hence, applying (5.4), (5.5), (5.6), we obtain 

(v6/2) Iwh - PhWIo,0 < Bhf{ IU- PhwIlo,oIlcurl ObhIJ0,4,Q 
+ I1WI10,4,0Icurl(?k - Ah)O1,01. 
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Therefore, since 

|1|curl V h ||10,4,Q -< (Bh ) 2 |f |1|0o4/3 , /V 

and the constant Bh is bounded with respect to h, we can write 

(5.12) Ijwh - PhWIo,0 < C1 (v, , f){Ijw - PhwIlo,n + Ilcurl(,b - Ah)I0,0}. 

The first term on the right-hand side is evaluated by Lemma 4.2. For the second 
term, we write 

Ilcurl(Phk - Ah) I1o Q < 11w - PhwIjonIIPhP - AhIIOQ. 

As PhP - Ah e Foh, this implies 

lIcurl(Phib - Ah)Io,0 <? C211w - PhWI1O,0, 

where C2 is the constant of Theorem 4.1. Hence, 

(5.13) I|curl(Vb - Ah)IJO,Q < inf Ilcurl(,b - (Ph)I|o0,0 + C211w - PhWI1o,0, 
~ChEFh 

and the estimate (5.10) follows from (5.12), (5.13) and (4.16). 
Finally, let us prove (5.11). On the one hand, we have 

(V(Ph - P), Vqh) = ((W - Wh) x curl Oh, Vqh) + (w x curl(V - VWh), Vqh) 

Vqh e Qh - 

Therefore, 

(5.14) I(V(Ph 
- P), Vqh)I 

? Iw 
- WhIIo ,IICUr1 

c hl1O ,4,Q 
+ IIwIIo,4,Qllcurl(?k- fh)Ilo,Q}IqhI1,4,Q Vqh h 

and 

(5.15) |Ph - Whp1,0 < C3(v, w, f)h3/4{IIW - WhI|O,Q + Ilcurl(k - ?h)|O ,Q}, 
where Wh denotes the H1 (Q)-projection onto Qh'. On the other hand, let us choose 
for Ph and p their representatives in L2(Q) with zero mean value (denoted by 

LQ(Q)), i.e., (ph, 1) = (P, 1) = 0. A classical duality argument (cf. Aubin [1] and 
Nitsche [18]) yields 

IIPh-P Io,Q = sup {f(Ph-P.,9) /I9I911OQ}, 
9EL2 (Q) 

where g = -Aq, Oq/0njr = 0, q e H2(Q), IjqII2,Q < C411gJ10,0. Thus, 

(Ph - P 9) = (V(Ph - P)), Vq) = (V(Ph - P), V(q - qh)) + (V(ph - P), Vqh) 

Vqh e Qh- 

As k' > 1, let us take qh = Shq, the standard interpolant of q in Qh'. The familiar 
theory of finite element interpolation (cf. Ciarlet [7]) gives 

jShqj1,4,Q < C5jjqjj2,Q, Iq - Shqll,n < C6hllqll2,0- 

Now we easily derive (5.11) from (5.14) and (5.15). O 
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COROLLARY 5.1. With the notations and assumptions of Theorem 5.1, {Uh = 

(Ph,Wh),jIh} converges to {u = (?,bw),)P}. In addition, when the solution is sufi- 
ciently smooth, we have the following orders of convergence: 

I1curl(k - Vh)I10,0 + 11w - WhI|0,Q < Ch k{Icurl PlkQ+ C(s)h+3/8-3/ Pjk,01, 

IIP -PhI1o,0 < Chk{Icurl Vlk,Q + C(s)h 3/8 3/2 IWjk,0 + IPIk,0}- 

If w E Hk+l((Q)3, the factor of C(s) becomes h1+3/8-3/2. 

Proof. When k > 1, we substitute the estimates of Theorem 3.1 into those 

of Theorem 5.1. When k = 1, w is not sufficiently smooth for the interpolation 

operator rh. Instead, we can use a local regularization operator like the ones defined 

by Clement in [8] and Bernardi in [6], that preserves the constraint W x n = 0 and 

is of order one. E 

The error estimates of Corollary 5.1 are nearly optimal in the sense that poly- 

nomials of degree k yield an error of the order of hk-6 for w, curl ?,b and P in the 

L2 norm. On the other hand, the error for curl ?,b in the L4 norm is only of the 

order of hk-3/4, but we believe that this bound can be refined. 

We finish this section with a similar, but more accurate analysis for the Stokes 

problem (2.14)-(2.17). The corresponding scheme is: 

Find a pair (bh, Wh) E Foh x Fh and Ph E Qk/R such that 

(5.16) v(curl wh,curl Ph) = (f,curl Ph) VPh E Fh, 

(5.17) (curl bh,curl Ph) = (Wh,.Ph) V8h E Fh, 

(5.18) (VphVqh) = (f, Vqh) Vqh e Qh 

It is easy to derive the following expressions for the error: 

(5.19) I|curl(w -Wh)IIO,Q = inf I|curl(w-Ph)IIo,_, 
JAhEFh 

(5.8) I1curl(ik - Vh)I1o,0 < inf I1curl(k - Ph)I|o,0 + C1 11W - WhI1o1, 
(PhEFh 

(5.20) IP - Ph I 1,Q inf |lP - qhl|l,Q q 
qhEQh 

Then Lemma 4.2 and the duality argument of Theorem 5.1 yield 

I1curl(?k - 1h)I1O,0 

(5.21) < inf I1curl( b-h) IIOQ, 

+ C1 inf [1w -PhIjo , + C(s)h1+3/s 3/2 I1curl(w -h) llO 
0] 

JAhEFh 

(5.22) IIP-PhI|0,Q < C2h inf IP-qhl1,Q. 
qhEQh 

Hence, when the solution is sufficiently smooth, this scheme has the following orders 

of convergence: 

I1curl(w - Wh)IIO,0 = O(h k), 11w - WhIO, -(h ) 
I1curl( - ?h)|O ,Q = O(hk), IP - PhI1,Q = O(hk), IIP - PhIo0,0 = O(h k+ ). 

They are nearly optimal for w and optimal for the other variables. 
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6. The System (1.1) With Boundary Conditions (1.2b). Because of its 
boundary conditions, Problem (1.1), (1.2b) cannot be decoupled as neatly as above; 
nevertheless, its analysis is quite similar to that of the preceding sections. Since 
u n = 0 on the whole of F, we can still write the velocity u as 

u =curl )b, with div Vb =0 in Q and 'b x n =O on F. 

Hence, if we set 

H/3 (curl; Q) = {v E H4 3(curl; Q); v x n = 0 on 1o 

we have the following variational formulation for Problem (1.1), (1.2b): 
Find a pair (V,, w) E H04(curl; Q) x Hr3(curl; Q) and 3 E W"4/3(Q)/R, such 

that 

(6.1) v(curl w, curl (p) + (w x curl ?,b, curl (p) = (f, curl (p) 
8po E Ho4 (url; Q), 

(6.2) (curl ?,b, curl A) = (w, A) V8 E HQ/(curl; Q), 
(6.3) div?,b = 0 in Q, 
(6.4) (V1, Vq) = (f - vcurlw - w x curl ?,b, Vq) Vq E W1,4(Q). 

Like in Theorem 2.4, it is easy to prove that if the right-hand side f and the solutions 
(u, p) of the system (1.1), (1.2b) have the regularity 

(2.8) f E L4/3(0)3, w = curl u E H4/3(curl; Q), p E wl,4/3(Q) 

then the mixed formulation (6.1)-(6.4) is equivalent to (1.1), (1.2b). 
The corresponding space V is 

V = {v = (p,O) E HO(curl;Q) x L2 ()3;div p = 0, 

(curl Ap, curl A) = (0, A) V8 E H/3 (curl; Q)}, 
and the seminorm 

(2.11) Ivi = I(pP)I = ll0llo,0 
is again an equivalent norm on V. With this space V, we use the expressions (5.1) 
and (5.2) to define the constants N and B and a standard argument proves that 
under the condition 

(6.5) [NBllfllo,4/3,0]/v2 < 1, 

the solution of Problem (6.1)-(6.4) is unique. 
As far as the approximation is concerned, we retain all the finite element spaces 

of Section 3, and we introduce the spaces 

(6.6) Mhro {= h E Mh; Ih x n =O on o}, 

(6.7) Vh = {Vh = ((PhOh) E FOh X Mh,ro; 

(curl ph, curl Ih) = (Oh, Ih) V8h E Mhro}. 
It is easy to verify that the discrete "Sobolev inequality" Theorem 4.2 and the 
discrete "compactness" Theorem 4.3 are still valid for this space Vh. 
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The corresponding discretization of Problem (6.1)-(6.4) is: 
Find a pair (bh, Wh) e FOh X Mh,ro and Ph e Qh /R such that 

(6.8) v(curl Wh, curl 'Ph) + (Wh x curl th, curl 'Ph) = (f, curl 'Ph) V'Ph e Fh, 

(6.9) (curl ?,bh,curl hh) = (Ph, Ph) Vhh e Mhro , 

(6.10) (V3h, Vqh) = (f - v curlWh - Wh X curl Oh, Vqh) Vqh e h 

where k' = max(k- 1, 1). 

The following theorem establishes the convergence properties of this scheme. 

THEOREM 6. 1. Let Q be a convex polyhedron and assume that the Navier- 
Stokes system (1.1), (1.2b) has the following regularity: 

(2.8) f E L4/3(Q)3, w = curl u e H4/3(curl; Q), p e W14/3(Q) 

and satisfies the condition 

(6.11) [NB If IIo,4i3,Q]/v2 < 1-6 for some 6 > 0. 

If the triangulation h is uniformly regular, then the mixed approximation (6.8)- 
(6.10) has a unique solution {Uh = (th, Wh), Ph}, which bears the following relations 
with the solution {u = (tk,w), p} of the mixed formulation (6.1)-(6.4): 

(6.12) I|curl( - 0bh)IIo,0 < inf I|curl(tb - (Ph)IIo,0 + C 11w - whIo,0, 
- PhEFh 

I1curl(t/ - Oh)I10,4,0 

(6.13) < inf { Icurl(tb - 'Ph)I0,4,0 + C2h 3/4 lcurl(tb - 'Ph)Io,0} 
(PhEFh 

+ C311| - WShIIOQ 

Moreover, when w e H(curl; Q), we have the error estimate 

11W - WhIIO,Q 

(6.14) < K1(v,w,f) C4h inf Ilcurl(?- 1h)I0,Q 
~OhEFh 

+ inf [I1curl(w - Ah)I1o,0 + 11w - hhIIO,)D] 
PhEMh,Fo 

If, in addition, p e H'(Q), we have 

IP- PhIIO0,Q < K2(V,wf){ Iw - whIIOQ + I1curl(?k - Oh)|oQ, } 
(6.15) +C5h inf IP-qhI1,Q. 

qhEQk 

Again, all constants involved are independent of h. 

Proof. We shall just sketch the proof, because it is very similar to that of Theorem 

5.1. Here also, we write 

v(curl(Wh - Oh), curl 'Ph) + ((Wh - Oh) X curl ?h, curl 'Ph) 

+ (x X curl(,bh - Ah), curl POh) 

= v(curl(w - Oh), curl 'Ph) + ((w - 
Oh) X curl ?h, curl 'Ph) 

+(x X curl(tb - Ah), curl 'Ph) V'Ph, Ah E Fh,VOh E Mh,roP 
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Let us fix Ah in Foh and associate Oh in Mhro with 

(curl Ah, curl 1h) = (Oh,I'h) Vsh E Mh,rp, 

so that the pair belongs to Vh. Let us choose Oh = th - Ah and observe that 

(curl(w - Oh), curl(t/h - Ah)) = (curl(w - Ih), curl(tkh - Ah)) 

+ Ph-Oh, Ph-Oh) V4h E Mh,rop 

Thus, if h is sufficiently small, we obtain 

IjWh - OhI1o,0 < C1(V, W'f) inf [I1curl(w -/h)jjo,Q + JIIh - OhIIO,] 
{ A hEM h,r 

+ 11w - OhI1O,0 + I1curl(V) - Ah)I|OQ} 

It remains to evaluate 11w - Oh IO,- Unfortunately, this computation is not optimal. 
At the present stage all we can say is that 

11w - OhI|O,Q < 2 inf 11w -PhIjO,Q 
IAh EMhro 

+ sup {llcurl ghllO,Q/IlghIIo4} |lcurl(tb-Ah)IIOQX 
ghEMh,Fo 

i.e., 

(6.16) 11w - 0hI|o,Q < 2 inf 11W - IhIIO,Q + C2h'Ijjcurl(tb - Ah)I0,o 
IAhEMh,Fo 

This proves (6.14). 
As far as the pressure is concerned, we proceed much like in Theorem 2.7, Chap- 

ter III of Girault and Raviart [12]. First we choose for Ph and P their representatives 
in Lo(Q); then we associate with Ph - a function v in Ho'(7)3 such that 

Ph -P = divv and lvl1,, < C3 IlPh - PQ 

Let us split v into a gradient and a rotation: 

v=Vq+curl 'p, 

where q E H2(F) is the solution of 

Zq = divv in Q, Oq/On = 0 on F and llqll2,Q < C4IIPh - P3lO,0; 

and according to Theorem 2.2, 

divp = O in Q, ~pxn=O onr, (pEW"18(0)3, curl (, E H1'(0)3 

and lcurl WljjjQ < C5llPh -Pllon. In addition, let us set 

Vh = Vwrhq + curl rhW, 

where Wh denotes the H'(Q)-projection onto Qk'. Thus, we can write 

IlPh - pllo = (Ph - P, divv) = -(V(Ph - P), Vq) 

=-(V(th -jP), V(q-7hq)) - (V(Ph -j3), V7hq) Vth E Qh- 

The first term in the right-hand side is easily estimated, and it remains to evaluate 
the second term. 
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We have 

(V(Ph - P), Vwhq) = v(curl(w - Wh), Vwhq) + ((w - Wh) x curl Oh, Vwhq) 

+ (w x curl(Ob - Obh), Vwhq). 

The last two terms can be bounded as in Theorem 5.1. As far as the first term is 
concerned, we write 

v(curl(w - Wh), Vwhq) = v(curl(w - Wh), Vh - curl rh(o) 

= v(curl(w - wh),vh - v) + v(curl(w - Wh),v) 

- v(curl(w - Wh), curl rhP). 

Again, the first two terms are easily bounded. For the last term, we take the 
difference between (6.1) and (6.8): 

v(curl(w - Wh), curl rhP) = ((h - w) x curl fbh, curl rhP) 

+ (w x curl(Ih - Ob), curl rh P). 

This expression is also readily evaluated, and (6.15) follows from the above 
bounds. 5 

COROLLARY 6.1. With the notations and assumptions of Theorem 6.1, {uh = 

(th,Wh),Ph} converges to {u = (O,w),P} when k > 2. In addition, when the 
solution is sufficiently smooth, we have the following orders of convergence: 

I1curl(I - Oh)Io0,0 + 11w - wh0,0 < Ch k{Icurl Oklk,Q + IwUk4,}, 

IIP - PhII0,0 < Ch k{Icurl OklkQ + IWSk,Q} + Ch kIPIk,,Q 

When solved with the same mixed finite element method, the classical Stokes 
problem has an analogous order of convergence (cf. Nedelec [17]). In particular, we 
observe here the same loss of one power of h, which is not due to the nonlinearity, 
but to the coupling of the vorticity Wh and vector potential Oh in formula (6.9). 
This does not occur when the boundary conditions (1.2a) are discretized because 
then, Wh and Oh belong to the same space. However, we believe that the results 
of Corollary 6.1 are not optimal and that, like in the two-dimensional situation, 
a factor h1/2 can be recovered using the argument of Scholz [20]. This requires 
a sharp (and difficult) L' error estimate for the projection operator Ph on Foh 
defined by (4.15), which is not yet established. 

Finally, we also observe that in the present situation it is not worth using the 
complete Pk finite elements of Nedelec: The incomplete Pk give the same order of 
convergence and are substantially cheaper. 
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